维生素A是一种脂溶性维生素,有机化合物,化学式是C20H30O,对热、酸、碱稳定,易被氧化,紫外线可促进其氧化破坏。维生素A包括A1及A2,A1即视黄醇。维生素A2即3-脱氢视黄醇,其生理活性为维生素A1的40%。1
维生素A在维持视力、促进生长发育、维持上皮组织健康、增强免疫功能等方面具有重要作用,并可抑制某些癌前期病变。缺乏维生素A可能导致生长迟缓、夜盲症、干眼症、角膜软化、皮肤干燥角化,以及呼吸道抵抗力降低,增加感染风险。
我国成人维生素A推荐摄入量(RNI)男性为每日800 μg视黄醇活性当量,女性为每日700 μg视黄醇活性当量。2含维生素A多的食物有禽、畜的肝脏、蛋黄、奶粉,胡萝卜素在小肠粘膜内可变为维生素A,红黄色及深绿色蔬菜,水果中含胡萝卜素多。1
发现历史
维生素A是一种极其重要、极易缺乏的,为人体维持正常代谢和机能所必需的脂溶性维生素,它是由美国科学家Elmer Mc Collum和MArgAret Davis在1912~1914年之间发现的。其实早在1000多年前,中国唐代医学家孙思邈(公元581~ 682年)在《千金方》中就记载了用动物肝脏可治疗夜盲症,而有关巴西土人以鱼肝油治疗干眼病、丹麦人以橄榄油治疗干眼病的文献也有记载。在MArgAret DAvis等人从鳕鱼肝脏中提取出一种黄色黏稠液体——维生素A以前,人们并不了解维生素的存在,因此他首先将其命名为“脂溶性A”(A是德文干眼病“AugendArre”的第一个字母)。随着陆续有新的为人体所必需的脂溶性物质被科学家发现,到1920年,“脂溶性A”被英国科学家正式命名为维生素A。3
特点性质
维生素A并不是单一的化合物,而是一系列包括视黄醇(retinol)、视黄醛(retinene)、视黄酸(retinoic Acid)、视黄醇乙酸酯(retinyl AcetAte)和视黄醇棕榈酸酯(retinyl palmitate)等在内的视黄醇的衍生物,它们的分子结构如图《维生素A的分子结构》所示。维生素A只存在于动物体中,在鱼类特别是鱼肝油中含量很多。植物中并不含有维生素A,但许多蔬菜和水果却都含有维生素A原——胡萝卜素,它在小肠中可分解为维生素A,其中1分子β-胡萝卜素可分解为2分子维生素A,而1分子A-胡萝卜素或γ-萝卜素只能产生1分子维生素A。3
结构特点
维生素A是一组由20碳结构构成的、具有一个β-紫罗酮环、一个由四个头尾相连的类异戊二烯单元组成的侧链以及在碳-15位结合了一个羟基(视黄醇)、或者醛基(视黄醛)、或者羧酸基(视黄酸)、或者酯基(视黄酯)的分子集合。类胡萝卜素为聚异戊二烯化合物或萜类化合物,已经发现自然界中存在600多种形式的类胡萝卜素,其中只有部分具有维生素A原营养活性,但是具有膳食维生素A意义的只有β-胡萝卜素、α-胡萝卜素和β-隐黄质三种。全反式异构体是每一种类胡萝卜素最常见的和稳定的形式,但是,也存在许多顺式异构体。类胡萝卜素通常包含40碳原子,具有广泛的共轭双键系统,在其共轭碳链的末端,具有一个或两个环状结构。番茄红素是一个例外,它没有环状结构,也没有维生素A活性。4
物理性质
维生素A呈黄色片状晶体或结晶性粉末,不溶于水和甘油,能溶于醇、醚、烃和卤代烃等大多数有机溶剂。维生素A的主体——视黄醇的化学名称为全反式3,7-二甲基-9-(2,6,6-三甲基-1-环己烯基-1)-2,4,6,8-壬四烯-1-醇,其侧链上有4个共轭双键,理论上有16个几何异构体,由于立体位阻效应,自然界存在的几何异构体只有无位阻的全反式体、9-顺式体、13-顺式体、9,13-双顺式体和有位阻的11-顺式体,其中以全反式的生物活性最高。
化学性质
维生素A属于脂溶性维生素,可以不同程度地溶于大部分有机溶剂,但不溶于水。它的化学性质相对稳定,但暴露于热、光或空气中则会被轻易破坏,通常应避光保存,特别是在暴露于光线(尤其是紫外线)、氧气、性质活泼的金属以及高温环境时,可加快这种氧化破坏。但一般烹调过程不至于对食物中的维生素A造成太多破坏。在理想条件下,如低温冷冻等,血清、组织或结晶态的类视黄醇可保持长期稳定。在无氧条件下,视黄醛对碱比较稳定,但在酸中不稳定,可发生脱氢或双键的重新排列。油脂在酸败过程中,其所含的维生素A和胡萝卜素会受到严重的破坏。食物中的磷脂、维生素E或其他抗氧化剂有提高维生素A稳定性的作用。由于维生素A醋酸酯(视黄醇乙酸酯)比维生素A醇(视黄醇)稳定,所以市场上称为“维生素A”的商品,实际上都是维生素A的醋酸酯,它为淡黄色的油状液体,冷冻后可固化,几乎无臭或有微弱鱼腥味,但无酸败味,极易溶于三氯甲烷或酯中,也溶于无水乙醇和植物油,但不溶于丙三醇和水,在空气中和遇光时不稳定。34
主要分类
视黄醇和其他类视黄醇都具有连续共轭双键,它们都能产生特有的紫外光或可见光吸收光谱。在乙醇中的最大吸收波长为全反式视黄醇325 nm,全反式视黄醛381 nm,全反式视黄酸350 nm。视黄醇在325 nm波长紫外光照射下,可以产生470 nm荧光。目前最常见的类视黄醇检测方法,就是利用其上述特性,采用反相高效液相色谱,配合紫外光/荧光检测器来完成。维生素A在体内主要储存于肝脏中,约占总量的90%-95%,少量存在于脂肪组织。4
β-胡萝卜素是类胡萝卜素中最为突出的一个成分,原因在于它是最早被认识的类胡萝卜素组分;它几乎是人体内含量高的类胡萝卜素组分;它在我们食物中分布最广、含量最丰富,特别是在蔬菜、水果中最突出,几乎所有的蔬菜、水果,或多或少都有其踪迹;此外,它也是类胡萝卜素组分中维生素A原活性最强的。4
β-胡萝卜素分子式为C40H56,分子量为536.87,其分子结构中具有许多共轭双键,这些双键即可吸收可见光中的某些光谱,使其呈现特殊颜色,同时又使其具有极强的淬灭活性氧自由基的能力,可减轻机体抗氧化损伤,从而发挥疾病预防作用。β-胡萝卜素分子实际上就是两个尾部相连的视黄醇分子,通过中心裂解或偏心裂解,可转变成两个或一个维生素A。β一胡萝卜素又分为全反式和顺式异构体。全反式β-胡萝卜素经过中心裂解,可以生成两分子全反式视黄醇(维生素A),顺式β-胡萝卜素转换为维生素A的产量则较低。4
α-胡萝卜素与β-胡萝卜素分子结构相似,为同分异构体,差别在于一端的β-紫罗酮环中5’,6’双键发生变化,而此β-紫罗酮环是维生素A活性所必需的结构。因此,α-胡萝卜素转变为维生素A的产量只有β-胡萝卜素的一半。除维生素A活性外。α-胡萝卜素的性质和功效与β-胡萝卜素相似。4
β稳黄质,也被称为β-隐黄素、β-胡萝卜素-3-醇,是一种含氧的叶黄素类的类胡萝卜素,其分子式为C40H56O,分子量为552.87。与β-胡萝卜素相比,β-隐黄质分子结构是在3位由一个轻基取代原来的一个氢原子,其分子比β-胡萝卜素多一个氧原子,由此造成β一紫罗酮环结构变化,使这一半分子失去维生素A活性可能,故β隐黄质和α-胡萝卜素一样,转变为维生素A的产量只有β-胡萝卜素的一半。除了维生素A活性外,β隐黄质也同样具有较强的抗氧化活性。4
膳食中的类胡萝卜素相对比较稳定,烹调过程中破坏较少,并且食物的加工和热处理有助于提高植物细胞内胡萝卜素的释出,提高其吸收率。但长时间的高温,特别是在有氧和紫外线照射的条件下,损失会明显的增加。我国的炒菜方法,胡萝卜素的保存率为70%一90%。4
维生素A的合成
虽然维生素A可从动物组织中提取,但资源相对分散,步骤繁杂,成本较高,因此商品维生素A都是化学合成产品。国内外维生素A的工业合成,主要有瑞士Roche和德国BASF两条合成工艺路线。前者以β-紫罗兰酮为起始原料,格氏反应为特征,经DArzens反应、格氏反应、选择加氢、羟基溴化和脱溴化氢,完成维生素A醋酸酯的合成;后者的典型特征则是Wittng反应,其合成路线如图《BASF法合成维生素A》所示,它是以β-紫罗兰酮为起始原料和乙炔进行格氏反应生成乙炔-β-紫罗兰醇,选择加氢得到乙烯-β-紫罗兰醇,再经Wittng反应之后,以醇钠为催化剂,与C5醛缩合生成维生素A醋酸酯。3
维生素A的测定
常见的检测维生素A的方法主要有比色法、紫外分光光度法、近红外光谱法和高效液相色谱法。比色法测定维生素A的原理是基于维生素A能和各种酸反应,生成蓝紫色到桃红色的有色化合物,其中维生素A与三氯化锑-三氯甲烷溶液(或三氟醋酸-三氯甲烷溶液)生成的蓝色化合物在620nm波长处有特征吸收,是应用较早的一种灵敏的方法。随着紫外分光光度法和高效液相色谱法等的发展,该方法已很少用于定量检测,仅用于定性检测。紫外分光光度法的原理是根据维生素A在325或328 nm波长处有最大吸收而进行定量检测的。近红外光谱法则基于维生素A在1721和1872nm波长处有两个较稳定的特征吸收峰。高效液相色谱法通常是基于维生素A在紫外区的特征吸收以及维生素A的天然荧光特性。3
维生素A可以与多种含氯化合物在氯仿中反应,生成带有颜色的溶液,这种颜色反应可以用于元素定性分析或油脂中维生素A的检测。常见的能与维生素A发生颜色反应的化合物有:
- SbCl3与维生素A反应显示的蓝色可以在三分钟以内不褪去。
- SnCl4与维生素A反应最初可以得到深蓝色溶液,随后溶液迅速变为紫色。
- FeCl3与维生素A反应使溶液显出带有荧光的紫红色,但由于该体系难以保持无水,故多次进行反应时可能会得到不一样的结果。
- 向维生素A的油溶液中加入极细的AlCl3粉末,溶液中显示紫红色,随后转变为棕色。但当溶于氯仿的油中含有干燥的氯化氢或光气且加入的AlCl3为细粉末时会得到持续时间相近的紫色溶液。
- 将SiCl4加入维生素A的鱼肝油溶液中,溶液呈现玫瑰红色,但该反应分辨率不高。
- POCl3与维生素A反应得到的溶液为蓝色,之后迅速转为红色。
摄取来源
许多食物中都含有维生素A,如下表所列。方括号中的值是视黄醇活性当量(RAE)及平均每100克食品的成年男性的参考膳食摄取量百分比(RAEs)。胡萝卜素转化为视黄醇的含量因人而异,食物中胡萝卜素的生物利用度各不相同。910
|| || 不同食物中维生素A的含量及其对成年男性参考膳食摄入量的百分比
生理功能
维生素A在人体具有广泛而重要的生理功能,概括起来主要包括视觉、细胞增殖分化调节、细胞间信息交流和免疫应答这几个方面,其缺乏会导致的生理功能异常和病理变化。4
视觉功能
维生素A经典的或最早被认识的功能是在视觉细胞内参与维持暗视感光物质循环。视网膜上的杆状细胞含有的视紫红质,是由11-顺式视黄醛与视蛋白结合而成,其对暗光敏感。视紫红质感光后,11-顺式视黄醛转变为全反式视黄醛并与视蛋白分离,产生视觉电信号。解离后的全反式视黄醛在杆状细胞内被还原为全反式视黄醇,被转运到视网膜色素上皮细胞,与来自血浆的全反式视黄醇一起,开始复杂的异构化过程,参与重新合成视紫红质所需的11-顺式视黄醛的供应,维持暗光适应。因此要维持良好的暗光视觉,就需要源源不断地向杆状细胞供给充足的11-顺式视黄醛。维生素A缺乏时,11-顺式视黄醛供给减少,暗适应时间延长。4
维持皮肤粘膜完整性
维生素A是调节糖蛋白合成的一种辅酶,对上皮细胞的细胞膜起稳定作用,维持上皮细胞的形态完整和功能健全。维生素A的这种对组织功能与完整性的作用,是通过介导临近细胞间的信息交流而实现的。维生素A缺乏会造成上皮组织干燥,正常的柱状上皮细胞转变为角状的覆层鳞状细胞,导致细胞角化。全身各种组织的上皮细胞都会受到影响,但受累最早的是眼睛结膜、角膜和泪腺上皮细胞,泪腺分泌减少导致干眼症,结膜或角膜干燥、软化甚至穿孔。皮肤毛囊、皮脂腺、汗腺、舌味蕾、呼吸道和肠道薪膜、泌尿和生殖薪膜等上皮细胞均会受到影响,从而产生相应临床表现和粘膜屏障功能受损。4
细胞核激素样作用
维生素A通过细胞核内类视黄酸受体,调节和控制细胞核内信使RNA的激活与表达。细胞核内存在类视黄醇受体,包括三种视黄酸受体RARα,β和γ以及三种其9顺式异构体类视黄醇x受体RxRα,β和γ。RARs可以结合并对视黄酸及异构体产生反应,而RXRs则特异性地结合视黄酸异构体(9-顺式视黄酸)。这些核受体通过两两聚合,形成各种同二聚体或异二聚体,与相应的视黄酸反应原件RARE或RXRE结合,从而调控靶细胞基因的相应区域。类视黄醇受体的最重要功能是调控细胞分裂和分化。包括RXR在内的信息物质降低细胞增殖并促进细胞程序化死亡(凋亡)。对于细胞分化,细胞内类视黄醇的调控功能主要通过RAR影响细胞周期蛋白而发挥作用。这种调控结果可影响到机体的各个方面,包括生长发育、生殖功能、免疫功能、造血功能等。4
维持和促进免疫功能
类视黄醇对维护免疫功能是必需的,后者依赖于免疫刺激引发的细胞分化和增殖。类视黄酸通过核受体对靶基因的调控,可以提高细胞免疫功能,促进免疫细胞产生抗体,以及促进T淋巴细胞产生某些淋巴因子。视黄酸对维持循环血液中足量水平的自然杀伤细胞极为重要,后者具有抗病毒、抗肿瘤活性。已经证明视黄酸可提高鼠类巨噬细胞的吞噬活性,增加白介素1和其他细胞因子的生成,后者是炎症反应的介导因子和T、B淋巴细胞生产的激活因子。此外,B淋巴细胞的生长、分化和激活也需要视黄醇。维生素A缺乏时,免疫细胞内视黄酸受体表达相应下降,影响机体免疫功能。维生素A缺乏和边缘缺乏的儿童,感染性疾病发病风险和死亡率升高。4