版权归原作者所有,如有侵权,请联系我们

[科普中国]-生物陶瓷

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

生物陶瓷(Bioceramics)是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体直接相关的生物、医用、生物化学等的陶瓷材料。作为生物陶瓷材料,需要具备如下条件:生物相容性,力学相容性,与生物组织有优异的亲和性,抗血栓,灭菌性并具有很好的物理、化学稳定性。

发展生物陶瓷材料作为生物医学材料始于18世纪初。1808年初成功制成了用于镶牙的陶齿,而后在1871年,羟基磷灰石被人工合成。1894年,H.Dreeman报道使用熟石膏作为骨替换材料。1926年Bassett用X-射线衍射分析发现骨和牙的矿物质与羟基磷灰石的X射线谱相似。1928年,Leriche和Policard开始研究和应用磷酸钙作为骨替换材料。1930年,Naray-Szabo 和Mehmel独立地应用X-ray衍射分析确定了氟磷灰石的结构。1963年在生物陶瓷发展史上也是重要的一年,该年Smith 报告发展了一种陶瓷骨替代材料。由于技术方面的限制,直到1971年才有羟基磷灰石被成功研制并扩大到临床应用的报道。1974年,Hench在设计玻璃成分时,曾有意识地寻求一种容易降解的玻璃,当把这种玻璃材料植入生物体内作为骨骼和牙齿的替代物时,发现有些材料中的组织可以和生物体内的组分互相交换或者反应,最终形成与生物体本身相容的性质,构成新生骨骼和牙齿的一部分。这种将无机材料与生物医学相联系的开创性研究成果,很快得到了各国学者的高度重视。

中国20世纪70年代初期开始研究生物陶瓷,并用于临床。1974年开展微晶玻璃用于人工关节的研究;1977年氧化铝陶瓷在临床上获得应用;1979年高纯氧化铝单晶用于临床,以后又有新型生物陶瓷材料不断出现,并应用于临床。中国上海硅酸盐研究所、华南理工大学、北京市口腔医学研究所等单位对生物陶瓷都进行了深入的研究。生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨、人工关节、人工齿根、骨充填材料、骨置换材料、骨结合材料、还可应用于人造心脏瓣膜、人工肌腱、人工血管、人工气管,经皮引线可应用于体内医学监测等。

分类生物陶瓷材料可分为生物惰性陶瓷(如Al2O3,ZrO2等)和生物活性陶瓷(如致密羟基磷灰石,生物活性玻璃等)。

生物惰性陶瓷

生物惰性陶瓷主要是指化学性能稳定、生物相溶性好的陶瓷材料。如氧化铝、氧化锆以及医用碳素材料等。这类陶瓷材料的结构都比较稳定,分子中的键合力较强,而且都具有较高的强度、耐磨性及化学稳定性。

1. 氧化铝生物陶瓷

单晶氧化铝c 轴方向具有相当高的抗弯强度,耐磨性能好,耐热性好,可以直接与骨固定。已被用作人工骨、牙根、关节、螺栓。并且该螺栓不生锈,也不会溶解出有害离子,与金属螺栓不同,勿需取出体外。60年代后期,广泛用作硬组织修复。70年代至80年代中期,世界许多国家如美国、日本、瑞士等国家,都对氧化物陶瓷,特别是氧化铝生物陶瓷进行了广泛的研究和应用。由于氧化铝陶瓷植入人体后表面生成极薄的纤维膜,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接。通过火焰熔融法制造的单晶氧化铝,强度很高,耐磨性好,可精细加工,制成人工牙根、骨折固定器等。多晶氧化铝,即刚玉,强度大,用于制作人工髋关节,人工骨,人工牙根和关节。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位,但其不足之处在于加工困难。中国陶瓷在实验室研究水准上完全可达到ISO 标准,但用于临床仍有一定差距,材料未达到ISO 标准。

(国际标准化组织(ISO)对于医用氧化铝植入制品的要求)

|| ||

**氧化铝单晶的生产工艺:**氧化铝单晶的生产工艺有提拉法、导模法、气相化学沉积生长法、焰熔法等。

a、提拉法

即是把原料装入坩埚内,将坩埚置于单晶炉内,加热使原料完全熔化,把装在籽晶杆上的籽晶浸渍到熔体中与液面接触,精密地控制和调整温度,缓缓地向上提拉籽晶杆,并以一定的速度旋转,使结晶过程在固液界面上连续地进行,直到晶体生长达到预定长度为止。提拉籽晶杆的速度1.0-4mm/min 坩埚的转速为10r/min,籽晶杆的转速为25r/min

b、导模法

简称EFG法。在拟定生长的单晶物质熔体中,放顶面下所拟生长的晶体截面形状相同的空心模子即导模,模子用材料应能使熔体充分润湿,而又不发生反应。由于毛细管的现象,熔体上升,到模子的顶端面形成一层薄的熔体面。将晶种浸渍到基中,便可提拉出截面与模子顶端截面形状相同的晶体。

c、气相化学沉积生长法

将金属的氢氧化物、卤化物或金属有机物蒸发成气相,或用适当的气体做载体,输送到使其凝聚的较低温度带内,通过化学反应,在一定的衬底上沉积形成薄膜晶体。

d、焰熔法

将原料装在料斗内,下降通过倒装的氢氧焰喷嘴,将其熔化后沉积在保温炉内的耐火材料托柱上,形成一层熔化层,边下降托柱边进行结晶。用这种方法晶体生长速度快、工艺较简单,不需要昂贵的铱金坩埚和容器,因此较经济。

e、单晶氧化铝临床应用。

它用作人工关节柄与氧化铝多晶陶瓷相比具有比较高的机械强度,不易折断。它还可以作为损伤骨的固定材料,主要用于制作人工骨螺钉,比用金属材料制成的人工骨螺钉强度高。可以加工成各种齿用的尺寸小、强度大的牙根,由于氧化铝单晶与人体蛋白质有良好的亲合性能,结合力强,因此有利于牙龈粘膜与异齿材料的附着。

2. 氧化锆陶瓷

氧化锆陶瓷(Zirconia Bioceramics)是以ZrO2为主要成分的生物惰性陶瓷,其显著特征是具有高断裂韧性、高断裂强度和低弹性模量。氧化锆(ZrO2)具有极高的化学稳定性和热稳定性(Tm=2953K),在生理环境中呈现惰性,具有很好的生物相容性。纯氧化锆具有三种同素异型体,在一定条件下可以发生晶型转变(相变)。在承受外力作用时,其 t 相向 m 相转变的过程需吸收较高的能量,使裂纹尖端应力松弛,增加裂纹扩散阻力而增韧,因而具有非常高的断裂韧性。

部分稳定的氧化锆和氧化铝一样,生物相容性良好,在人体内稳定性高,且比氧化铝断裂韧性、耐磨性更高,有利减少植入物尺寸和实现低摩擦、磨损, 用以制造牙根、骨、股关节、复合陶瓷人工骨、瓣膜等。上海的科学家还研制成功了等离子喷涂氧化锆人工骨与关节陶瓷涂层材料,并获得了国家发明奖。

(用于外科植入的氧化铝、氧化锆陶瓷性能比较)

|| ||

氧化锆陶瓷的制备工艺:自然界含有丰富的锆英石(ZrSiO4),采用化学法可以制备纯氧化锆粉体,加入助熔剂及适当改性剂辅料后,经成型、烧结得到氧化锆陶瓷。

生物医学应用:基于氧化锆陶瓷优良的生物相容性、良好的断裂韧性、高断裂强度和低弹性模量,适合制作需承受高剪切应力的人工关节。氧化锆/氧化锆对磨时,其磨损率是氧化铝/氧化铝对磨的磨损率的5000倍;但形成氧化/UHMWPE摩擦副时却表现出良好的摩擦磨损性能。

3.碳素生物材料

自然界中碳的分布很广,有单质碳,但更多以化合物形式存在。单质碳有多种同素异型体,主要有金刚石结构、石墨结构和无定形结构。碳是生物惰性的材料,在人体中化学稳定性好、无毒性、与人体组织亲和性好、无排异反应。特别需指出的是,无定形碳除具有优良的机械性能外,可以调整组成和结构改变其性能,满足不同的应用要求。无定形碳虽然不与人体组织形成化学键合,但允许人体软组织长入碳的空隙,形成牢固结合,碳周围的人体软组织可迅速再生,有人认为无定形碳具有诱发组织生长的作用。由于无定形碳独特的表面组成和表面结构,与血液长期接触引起的凝血作用非常小,不会诱发血栓,因而广泛应用作心血管材料。

在医学中常用的无定形碳包括:低温各向同性碳、玻璃状碳、超低温各向同性碳、类金刚石碳、碳纤维增强复合碳材料。

A、低温各向同性热解碳(Low Temperature Isotropic Pyrolytic Carbon,LTIC)、玻璃状碳(Glass Carbon)、超低温各向同性碳(Ultralow Temperature Isotropic Carbon,ULTIC)均为无序晶格晶格,统称为涡轮层碳。涡轮层碳(Turbostratic Carbon)的微观结构为无序结构,看起来很复杂,但实际上与石墨结构具有一定的相似性。从生物医学材料的观点出发,涡轮层碳的最大特点是具有优良的细胞生物相容性和抗凝血性,以LTIC和ULTIC更为突出。

涡轮层碳素材料的性质

|| ||

B、玻璃状碳。玻璃状碳是一种不可石墨化的单块碳,具有很高的各向同性特征,原生表面及断面有玻璃体外貌特征,但仅限于外观,并无硅酸盐玻璃的空间网状结构。玻璃状碳由无规则的大约5nm的晶粒组成,具有非常低的孔隙率,对液体和气体的渗透性很低。

C、类金刚石碳。类金刚石碳(Diamond-like Carbon,DLC)中除无定型结构的碳之外,还包含有少量的金刚石微晶、石墨微晶等,其物理性能与金刚石非常相似。由于制备类金刚石的原料为碳氢化合物,因此在类金刚石中除碳外,还含有较多的碳-氢基团;随其中碳-氢基团的种类和数量不同,类金刚石的性质亦有较大变化。它具有高硬度(Hv (kg/mm2) 1200-1800)、高耐磨损、低摩擦系数、高耐腐蚀、组织相容和血液相容的优良特性。其制备工艺包括:等离子体化学气相沉积、离子束增强沉积、离子镀和 PIII-IBED等。

医用碳素材料的应用

|| ||

生物活性陶瓷

生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷具有骨传导性,它作为一个支架,成骨在其表面进行;它还可作为多种物质的外壳或填充骨缺损。生物活性陶瓷有生物活性玻璃、羟基磷灰石陶瓷、磷酸三钙陶瓷等几种。

1. 生物活性玻璃及玻璃陶瓷(Bioactive Glass & Glass-ceramics)

生物玻璃陶瓷的主要成分是CaO-Na2O-S iO2-P2O5,比普通窗玻璃含有较多钙和磷,能与骨自然牢固地发生化学结合。它具有区别于其他生物材料的独特属性,能在植入部位迅速发生一系列表面反应,最终导致含碳酸盐基磷灰石层的形成。生物玻璃陶瓷的生物相容性好,材料植入体内,无排斥、炎性及组织坏死等反应,能与骨形成骨性结合;与骨结合强度大,界面结合能力好,并且成骨较快。目前此种材料已用于修复耳小骨,对恢复听力具有良好效果。但由于强度低,只能用于人体受力不大的部位。目前制备生物活性玻璃的方法主要是采用溶胶- 凝胶法制备,采用该方法制备的材料具有特殊的化学组成,纳米团簇结构和微孔,因而比表面积较大,生物活性比其他生物玻璃及微晶玻璃更好。由于溶胶- 凝胶法制备的材料纯度好、均匀性高、生物活性好和比表面积大等特点,具有更好的研究及应用价值,特别是生物活性玻璃多孔材料在用作骨组织工程支架方面具有很好的前景。

生物活性玻璃及玻璃陶瓷最显著的特征是植入人体后,表面状况随时间而动态变化,表面形成生物活性的碳酸羟基磷灰石(HCA)层,为组织提供了键合界面。

A、组成:生物活性玻璃的组成主要为:SiO2、Na2O、CaO、P2O5等。生物活性玻璃陶瓷是在生物活性玻璃的基础上,控制晶化得到的多晶体。与传统钠钙硅体系玻璃相比,具有三大组成特征:SiO2含量低;Na2O、CaO含量高;CaO / P2O5比例高。

B、性质:快速的表面反应;无定形二维结构使强度及断裂韧性低;弹性模量(30-35MPa)低,与皮质骨接近;可切削生物玻璃具有良好的加工性能。

C、制备工艺:生物活性玻璃的制备工艺与传统的玻璃制备工艺基本相同,包括称重、混合、熔合、熔化、均匀化、玻璃形成等。玻璃陶瓷则还需在一定的热处理制度下控制玻璃成核与晶粒生长。

D、临床应用:a) 45S5生物活性玻璃用于中耳小骨置换、颌骨缺损修复、牙周缺损修复、骨嵴维护植入体,不引起细胞损伤、无降解产物、无感染性。b) Ceravital生物活性玻璃陶瓷用于中耳外科手术,是一种低钠、钾的生物活性玻璃陶瓷。c) 磷灰石-硅灰石活性玻璃--A-WGC,用作脊椎假体、胸、额骨修复以及骨缺损修复,已成功应用于数万名患者。d) 可切削生物活性玻璃-MBGC],主要用在颌面、脊椎、牙槽硬组织修复以及 口腔修复,其特点是优良的可加工行及骨结合性。

2.磷酸钙生物活性陶瓷

磷酸钙陶瓷(CPC)是生物活性陶瓷材料中的重要种类,目前研究和应用最多的是羟基磷灰石(HA)和磷酸三钙(TCP)。磷酸钙陶瓷含有CaO和P2O5两种成份,是构成人体硬组织的重要无机物质,植入人体后,其表面同人体组织可通过键的结合,达到完全亲和。其中,HA在组成和结构上与人骨和牙齿非常相似,具有较高的力学性能,在人体生理环境中可溶解性较低;TCP与骨的结合性好,无排异反应,在水溶液中的溶解程度远高于HA,能被体液缓慢降解、吸收,为新骨的生长提供丰富的钙、磷,促进新骨的生长。除了这二者,磷酸钙生物陶瓷还包括可降解、吸收的锌-钙-磷氧化物陶瓷(ZCAP)、硫酸锌-磷酸钙陶瓷(ZSCAP)、磷酸铝钙陶瓷(ALCAP)和铁-钙-磷氧化物陶瓷(FECAP)等。

A、组成和物化性能概述

磷酸钙化合物的分类通常是按照具有的Ca/P原子比(钙磷比)进行,磷酸钙陶瓷是具有不同钙磷比磷酸钙陶瓷的总称。

磷酸钙按照Ca/P进行分类

|| ||