有限群论是群论的基础部分,也是群论中应用最为广泛的一个分支。历史上,抽象群论的许多概念起源于有限群论。近年来,随着有限群理论的迅速发展,其应用的日益增多,有限群论已经成为现代科技的数学基础之一,是一般科技工作者乐于掌握的一个数学工具。有限群论无论是从理论本身还是从实际应用来说,都占有突出地位,它中的置换群、可解和非可解群、幂零群、以及群表示论等等,都是重要的研究对象,总之,其内容十分丰富而且庞大。
有限群的研究起源很早,其形成时期是与柯西、拉格朗日、高斯、阿贝尔以及后来的伽罗瓦、若尔当等人的名字相联系的。1829年伽罗瓦(Galois)引入了置换群的概念,并成功地解决了一个方程可用根式求解的充要条件。置换群是群论历史上最先知道的一种具体的群。拉格朗日和高斯在研究数论中的二次型类是出现过交换群的概念;Cayley(凯莱)曾经在1849年提出过抽象群,但这个概念的价值当时没有被认识到,远远超越时代的Dedekind(戴德金)在1858年给有限群下了一个抽象的定义,这个群是从置换群中引导出来的,他又在1877年提出了一个抽象的有限交换群。Kronecker(克罗内克)也给出了一个相当于阿贝尔群的定义,他规定了抽象的元素,运算,封闭性,结合性,交换性。以每个元素的逆运算的存在和唯一。他还证明了一些有关群的定理。1878年又是凯莱提出了一个群可以看作一个普遍的概念。毋需只限于置换群,这样认识到抽象群比置换群包含更多的东西。德国数学家霍尔德在l889年以后的若干年内,详细地研究了单群和可解群,证明:一个素数阶循环群是单群,n个(n>=5)文字的全部偶置换组成的交换群是单群。他还发现了许多其他有艰的单群。赫尔德和若尔当还建立了在有限群中的若尔当一霍尔德合成群列和若尔当一霍尔德定理。在19世纪末,德国数学家弗罗贝尼乌斯、迪克和英国数学家伯恩塞德等都致力于可解群的研究。20世纪初伯恩塞德证明的关于 (p,q是素数)必是可解群的定理,导致了对有限单群进行分类的重要研究。美国数学家汤普森和菲特在20世纪60年代初证明了有限群中长期悬而未决的一个猜想(伯恩塞德猜想);奇数阶群一定是可解群。它推动了有限群理论的发展。有限单群的完全分类,即找出有限单群所有的同构类,经过上百名数学家约百年的共同努力.于1981年得到完全解决,这是数学史上的一个非凡成就。1
说明设G是一个群, 如果G是有限集合,那么就称为有限群。
假若群G是一个有限群,则组成G的元的个数为G的阶,记为 |G|。
有限群的分类是个重要的数学问题。这个问题经过许多数学家的努力中有了完美的答案(相关概念如“魔群”)。
比如素数阶的有限群都是循环群。2
15阶分类Z表示循环群,S表示置换群,A表示交错群,D表示二面群,×表示直积。
阶数 | 交换群 | 非交换群 |
1 | 平凡群, Z1 = S1 = A2 | |
2 | Z2 = S2 = D1 | |
3 | Z3 = A3 | |
4 | Z4 | |
克莱因四元数群, Z2^2 | ||
5 | Z5 | |
6 | Z6 = Z3 × Z2 | S3 = D3 |
7 | Z7 | |
8 | Z8 | D4 |
Z4 × Z2 | 四元数群Q8 | |
Z2^3 | ||
9 | Z9 | |
Z3^2 | ||
10 | Z10 = Z5 × Z2 | D5 |
11 | Z11 | |
12 | Z12 = Z4 × Z3 | D6 = D3 × Z2 |
Z6 × Z2 = Z3 × Z2^3 | A4 | |
第3个Dicyclic群 | ||
13 | Z13 | |
14 | Z14 = Z7 × Z2 | D7 |
15 | Z15 = Z5 × Z3 |
群中长期悬而未决的一个猜想,奇数阶的群一定是可解群,因而有限非交换单群的阶必为偶数。
有限群理论中一个经典而重要的结果是著名的拉格朗日定理:有限群G的阶│G│等于G的子群H的阶│H│与H在G内的指数│G:H│的乘积,即│G│=│H│·│G:H│。但是,并非对│G│的任何因数d,G一定有阶为d的子群。例如,四次交错群A4的阶为12,而A4没有6阶子群(见置换群)。当│G│的因数是pk形的数即一素数p的k次幂时,则G必有阶为pk的子群。这就是有名的西洛第一定理。若除尽│G│的p的最高次幂是pm,其中p是素数,m是自然数,则G的pm阶子群称为西洛p子群。所谓西洛第二定理,其意为:①G中任两个西洛p子群在G内是共轭的;②G中西洛p子群的个数N,必满足N呏1(modp),且为任一西洛p子群的正规化子在G内的指数;③G中凡是阶为pk的子群必为某西洛p子群的子群。进一步有关于有限可解群的西洛基定理:G为可解群的
公式
充分必要条件是G有一组西洛基S1,S2,…,Sr,使G=S1S2…Sr。所谓西洛基,是指当G的阶(素因数分解)时,G的一组西洛pi子群Si,i=1,2,…,r,且,使。可解群的西洛基往往不止一组,但是,可解群的任意两组西洛基S1,S2,…,Sr与p1,p2,…,Sr是等价的,即在G中必有元素g使。阶为素数幂的群,习惯上称为p群。西洛子群都是 p群。有限可解群可以表为p群之积。西洛第一定理和第二定理统称为西洛定理。在有限可解群中可得到西洛定理推广的结果:有限群G为可解群的充分必要公式
条件是,只要有分解│G│=mn,(m,n)=1,G就有阶为m的子群;当G是可解群时,凡是阶为m的子群必互为共轭,若m1│m,则G中凡是阶为m1的子群必为G中至少一个阶为m的子群的子群。这样的m阶子群,通常称为可解群G中的霍尔π子群。 所谓群的π 性质,意即西洛性质的推广。西洛性质是西洛定理的同义语,即如果有限群G的阶|G|=g,h│g,(h,g/h)=1,h为素数幂,那么G至少有一个h阶子群,且任意两个h阶子群是共轭的,而G中凡是以h的因数为阶的子群,一定是G中某个h阶子群的子群。P.霍尔去掉上述条件中的“h为素数幂”而设“G是可解群”并得到了同样的结论。于是,根据P.霍尔的这一思想方法,将“h为素数幂”改为其他条件来进行探索的工作颇多。例如,“h为素数幂”改为“G包含一个h阶幂零子群”,仍得到相应的结论,即古典的西洛定理推广到含有h的一切素因数的集合π上所得的结果。3
幂零群当可解群 G的西洛基中诸西洛子群都是正规子群时,则可解群G称为幂零群。幂零群是可解群中的一个子类。有限群G为幂零群的充分必要条件是,G可表为p群的直积。p群自身当然是幂零群。除公式
了这个充分必要条件外,还有几个互为等价的充分必要条件,其中最重要的是,G有上中心列或下中心列。所谓上中心列,是指G有长为m的子群列,使,且其中 Z1(G)为 G 的中心Z(G),而递归地给出Zk+1(G)使Zk+1(G)/Zk(G)是商群G/Zk(G)的中心。由G的限性可知,必有某自然数k使,因此当m≥k时,恒有Zm(G)=Zk(G)。特别地,有某m使Zm(G)=G。所谓下中心列,是指G有长为n的子群列。设H、K是G的任意两个子集,【H,K】表示由形如 的元素所生成的G的子群,即【H,K】=;,于是【H,K】=【K,H】。当【x1,…,xn】定义后,再递归地定义。同样,对G的子集H1,…,Hn也作公式
类似的定义,且当任意xi∈G(i=1,2,…,n)时,则定义,因此,且。易知。从G的有限性可知,有某自然数k使。因此当m≥k时恒有Km(G)=Kk(G)。特别地,有自然数 n使Kn+1(G)=1。有限群的上中心列和下中心列两者同时存在,且其长相等,此时G必为幂零群,称为n类幂零群。因而,1类幂零群就是交换群。由此可知,幂零群是介于交换群与可解群之间的一类群。幂零群有下中心列,可解群则有换位群列。G为可解群的充分必要条件是,G有换位群列。所谓换位群列,是指G的子群列,式中为的换位子群,即,而n是某一正整数。此时G也称为n步可解群。1步可解群就是交换群。
p群在有限群的研究中,p群具有重要的意义。互不同构的pn阶群究竟有多少个,是一个古老而艰难的问题。迄今只解决了当p为奇素数且n≤6时以及当p=2且n≤7时pn阶群的个数问题。关于p群方面的工作颇多,其中由P.霍尔发表的计数原理与正则 p群是奠基性的工作。所谓计数定理,例如,设公式
|G|=pn,Sk(G)表示G中pk阶子群的个数,其中0≤k≤n。当Sk(G)=1(12,则对于1Gr=1所成的每公式
个商群是单群。
在群G中由有限多个正规子群组成的降链使Gi为真包含于Gi-1内的G之极大正规子群(即Gi-1/Gi是G/Gi的极小正规子群),称为G的主群列。G的任意两个主群列是等价的。其等价定义与合成群列的等价定义相同。
有限群有合成群列或主群列存在,且任意两个合成群列或主群列是等价的。这就是若尔当-赫尔德-施赖埃尔定理。凡是阶等于pαъ的群恒为可解群,其中p、是互异的素数,α、b是非负整数。这就是著名的伯恩赛德定理。而W.费特、J.汤普森在20世纪60年代初期又证明了有限。4
有关非可解群非可解群中目前还有很多属于数学的难题,许多数学家也发表了不少见解和猜想。如:
《最高阶元素个数为40的非可解群的分类 》、《具有一个很大交换子群的有限非可解群》等等。