定义
设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。
矩阵特征值和特征向量的概念和计算设A是数域P上的一个n阶矩阵,λ是一个未知量,
称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。
¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。
以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解,
称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。
特征值与特征向量的求法求法对于矩阵A,由AX=λ0X,λ0EX=AX,得[λ0E-A]X=θ即齐次线性方程组
有非零解的充分必要条件是:
即说明特征根是特征多项式|λ0E-A| =0的根,由代数基本定理
有n个复根λ1,λ2,…,λn,为A的n个特征根。当特征根λi(I=1,2,…,n)求出后,(λiE-A)X=θ是齐次方程,λi均会使|λiE-A|=0,(λiE-A)X=θ必存在非零解,且有无穷个解向量,(λiE-A)X=θ的基础解系以及基础解系的线性组合都是A的特征向量。
示例求矩阵 的特征值与特征向量。
解:由特征方程
解得A有2重特征值λ1=λ2=-2,有单特征值λ3=4。
对于特征值λ1=λ2=-2,解方程组(-2E-A)x=θ
得同解方程组x1-x2+x3=0,解为x1=x2-x3(x2,x3为自由未知量)。分别令自由未知量
得基础解系
所以A的对应于特征值λ1=λ2=-2的全部特征向量为x=k1ξ1+k2ξ2(k1,k2不全为零),可见,特征值λ=-2的特征向量空间是二维的。注意,特征值在重根时,特征向量空间的维数是特征根的重数。
对于特征值λ3=4,方程组(4E-A)x=q
得同解方程组为
通解为
令自由未知量x3=2得基础解系ξ3,所以A的对于特征值λ3=4得全部特征向量为x= k3ξ3。
性质性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则:
性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的一个特征根,x仍为对应的特征向量。
性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关1。