版权归原作者所有,如有侵权,请联系我们

[科普中国]-数列

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

由来三角形数

传说古希腊毕达哥拉斯(约公元前570-约公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数。比如,他们研究过:

由于这些数可以用如右图所示的三角形点阵表示,他们就将其称为三角形数。

正方形数类似地, 被称为正方形数,因为这些数能够表示成正方形。因此,按照一定顺序排列的一列数称为数列。

概念函数解释数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

一般形式数列的一般形式可以写成

简记为{an}。

项数列中的项必须是数,它可以是实数,也可以是复数。

用符号{an}表示数列,只不过是“借用”集合的符号,它们之间有本质上的区别:**1.**集合中的元素是互异的,而数列中的项可以是相同的。**2.**集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。

分类(1)有穷数列和无穷数列:

项数有限的数列为“有穷数列”(finite sequence);

项数无限的数列为“无穷数列”(infinite sequence)。

(2)对于正项数列:(数列的各项都是正数的为正项数列)

1)从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;

2)从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;

3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列(摇摆数列);

(3)周期数列:各项呈周期性变化的数列叫做周期数列(如三角函数);

(4)常熟数列:各项相等的数列叫做常数数列(如:2,2,2,2,2,2,2,2,2**)**。

公式(1)通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式,如 。数列通项公式的特点:1)有些数列的通项公式可以有不同形式,即不唯一;2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。

(2)递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。数列递推公式特点:1)有些数列的递推公式可以有不同形式,即不唯一。2)有些数列没有递推公式,即有递推公式不一定有通项公式。

等差数列定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示,前n项和用Sn表示。等差数列可以缩写为A.P.(Arithmetic Progression)1。

通项公式an=a1+(n-1)d

其中,n=1时 a1=S1;n≥2时 an=Sn-Sn-1。

an=kn+b(k,b为常数) 推导过程:an=dn+a1-d 令d=k,a1-d=b 则得到an=kn+b。

等差中项由三个数a,A,b组成的等差数列堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。有关系:A=(a+b)÷2。

前n项和倒序相加法推导前n项和公式:

Sn=a1+a2+a3 +·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d] ①

Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d] ②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2。

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

性质(1)任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*。

(3)若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq。

(4)对任意的k∈N*,有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n,则am+n=0。其于数学的中的应用,可举例:快速算出从23到132之间6的整倍数有多少个,算法不止一种,这里介绍用数列算令等差数列首项a1=24(24为6的4倍),等差d=6;于是令an= 24+6(n-1)