版权归原作者所有,如有侵权,请联系我们

[科普中国]-无穷大之谜

中国科普作家协会
原创
对科普科幻青年创作人才进行遴选和培训指导,支持青年人的创作
收藏

在开始之前,我们先看几个大数。

在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人 - 宰相西萨·班·达依尔。国王问他想要什么,他对国王说:"陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍。请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!"国王觉得这要求太容易满足了,就命令给他这些麦粒。当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求。

那么宰相要求得到的麦粒到底有多少呢?总数为:

第 第 第 第 第

1 2 3 4 …… 64

格 格 格 格 格

1 + 2 + 4+ 8 + ……… + 2的63次方 = 2的64次方(粒)

据估计,全世界两千年也难以生产这么多麦子!那我们就可以想象宰相西萨·班·达依尔以后的命运了。

历史学家鲍尔讲了一段故事:

在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

在这个故事中每将一个金片移到另一根针上时,移动的次数都是上一次移动的两倍,那么当把所有的金片都移动完成后,总的移动次数与第一个故事中的麦粒数相同。假设1秒移动一次金片,那么每天不停移动金片的话,总共需要将近5800亿年能够完成。根据现代科学研究,我们的地球只有46亿岁,太阳只有50亿岁,甚至宇宙也才只有区区150亿岁,而据研究太阳的寿命也就是大概100亿年,也就是说,从宇宙大爆炸的一刻起,僧侣就开始工作,日夜不停地移动金片,直到太阳毁灭他也不过才完成了全部工作的3%!所以世界末日丝毫不用担心的。

话说回来,我们看这些数字,这些大数让人看了就让人头大,也许我们小的时候都会数1-100,然后再努力的输出自己所能达到的极限,也许我们曾经写出一个特别长的数字并希望把读出来,就像6498461564942498456191649491206042480这样的数字,这样的数字也是够唬人的。但是这是人类的极限了吗?显然不是,如果我在上述的数上加1,那他就会变得更大,不断加1,也就不断变大。古代人有在绳子上系绳节计算事情的习惯,如果事情少那自然好办,但是如果遇到大的数字,恐怕古代人就没辙了。当然,我们现代人需要的数字比古代人大得多,但我们总是有方法数清的。但是如果一个数字不断加1,会不会大到我们都数不清呢?

上文的18446744073709551615和6498461564942498456191649491206042480这种数字是无穷大吗?显然这个数字能够数清楚,所以并不是无穷大。那么,地球上所有的沙子的数目总是无穷大了吧,答案依然是否定的,即使人们无法数清楚沙子的数目,但是客观上讲,沙子的数目总是一个固定的数,即使在1后面加上再多的0,那也不是无穷大。只要有足够的时间,上面所说的数一定是能数出来的。

那说了这么多,到底什么是无穷大呢?一个最简单地例子便是一条直线上的点的数目就是无穷大。将一条线段不断地分成一半,次数也是根本无法数清的,那也是无穷大,当然我们不考虑最后

那无穷大是一个具体的数字吗?那答案又是否定的,如果是具体的数字,那么不就数清楚了吗,那就不叫无穷大了。

那么无穷大是怎么表示的呢?无穷大的表示方法是“∞”,这个符号让我们想到了莫比乌斯带,很多人认为“∞”的创意来自于莫比乌斯带,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是“∞”的发明是早于莫比乌斯带的。那么是怎么回事呢?真相只有一个!那就是英国人沃利斯(John Wallis,1616-1703)的论文《算术的无穷大》中首次提出将8水平置放成“∞”来表示“无穷大”。现在“∞”还有了新的含义,那就是天气预报时雾霾是用这个符号表示的,大概是说雾霾的小颗粒数不完所以用无穷大表示吧。

“所有的整数的个数和一条直线的所有几何点的个数,究竟哪个大些?”——这个问题有意义吗?这个问题乍一看也真让人头大,但是数学家康托尔首先思考了这个问题。

这两个数既无法数出来,也无法表示,那怎么比较呢?康托尔提出可以将两组无穷大数进行意义配对,如果两组数最后都一个不剩,那么两个无穷大是一样大的;如果其中一组数还剩下了其他的数,那么这个无穷大便比另一个更大些。这显然是合理的。

我们先举一个最简单的例子,当我们在统计学校中桌子和椅子的数量时,使一张桌子配一把椅子,那么当多出椅子时,那么必定是椅子多,我们再让一个学生对应一副桌椅,那么多出的学生便是缺少的桌椅数,或多出的桌椅数加上学生数便是总的桌椅数。

数桌椅自然是很简单的问题,当我们回到无穷大之间的比较时,也是这样的思路。“所有的整数的个数和一条直线的所有几何点的个数,究竟哪个大些?”我们可以用刚才所说的方法,假设在直线的一头有一个点A,那么这条直线上就会有整数个点到点A的距离为整数,可是问题在于还有的点到点A的距离为小数,比如0.2236541…,那么整数与直线上点的一一对应关系也就不存在了,因此直线上的点是多于整数的个数的,两个无穷大的大小关系也就很明显了,直线上的几何点的数目是多于整数的。

那我们可以再证明一个很简单的例子。我们知道偶数与奇数的个数是相等的,那我们该如何证明呢?按照上文所说,我们应建立一个一一对应关系,很显然,这个一一对应关系很好找,让一个奇数加1便得到了偶数,那么奇数与偶数的一一对应关系我们就找到了,那自然就可以证明奇数与偶数的个数相等了。

对于无穷大,也许还有一件事会让你感到大吃一惊——部分与整体的可能是相等的!举一个比较简单的例子,奇数的个数等于偶数的个数,偶数的个数等于整数的个数!

这时你也许会反驳,刚才不是刚证明了奇数的数量一定是和偶数相等的吗?我们都知道奇数和偶数加起来便是整数,那很显然奇数与偶数各自的数量是整数的一半。

可是还有另外的一种对应关系,当我们将所有的整数乘2时,我们发现得到的居然全部是偶数,而将这些偶数又减1后,得到的全部是奇数。

这样你就惊奇的发现:偶数的个数等于奇数的个数,还等于整数的个数!部分与整体居然是相等的!

另外还有一个不可思议的例子:无论长短,线段上的点的数目永远是相等的。这就有点烧脑了,因为我们知道线段上的点我们看不到,数不清,很难通过一般的思维找到对应关系,但办法总是有的:

假设有两条不一样长的线段AC和AB,始终会有直线平行于BC交AB与AC于两个点,这两个点便具有一一对应的关系,也就是说长度不同的线段AB与AC上具有相同数量的整数点。

我们甚至可以证明更加神奇的观点:直线上的几何点数与平面上的几何点数相同。这也是整体与部分的关系。我们先比较一条长1厘米的线段上几何点的个数与面积为1平方厘米的正方形点的个数。首先假设一个点与线段一个端点的距离为0.456988厘米,那么我们将奇数位和偶数位的数字提取出来形成两个数,分别为0.468和0.598,以正方形的一个端点为原点建立直角坐标系,正方形在第一象限内,那么坐标为(0.468,0.598)的点就在正方形内,这时线段上的几何点就与正方形上的几何点建立了以一对应关系,线段上的几何点的个数便与正方形上点的个数相等了,那么直线与平面上的点的个数就相等了。

同理,一个正方形上的点与一个立方体上的几何点的个数也是相同的,只不过这次就比较麻烦了,因为要先证明正方体内的几何点的数目和线段上的几何点数目相等。我们还是假设存在一条1厘米的线段和1立方厘米的正方体,假设一个点离线段的一个端点距离为0.456789123厘米,那么我们将小数点后的数字分成三份,如第1、4、7位为一组,第2、5、8位为一组,第3、6、9位为一组,则可得到三个数字:0.471、0.582、0.693,那么以正方体的一个顶点为原点建立立体直角坐标系,正方体在第一象限,那么就有点(0.471,0.582,0.693)在正方体内,这样线段上的点就与立方体内的点建立了一一对应关系,那么线段上的几何点就与立方体内的几何点数量就相等了,因为正方形的几何点与线段上的几何点数目相等,那么正方形内的几何点与立方体内的几何点数量相等。

看到这里是不是头大了呢?也许这就是科学的魅力吧,当你沉迷于平时的生活经验或者是习惯思维时,科学总是突然给你一个激灵,居然还有这样的存在!因为科学就在于观察与思考。

尽管几何点的个数要比整数和分数的数目大,但是数学家们发现了比它更大的数,即各种曲线的样式的数目,它比所有几何点的数目要大得多,因此我们将其看作第三级无穷数列。

无穷大数随级别增大,无穷大也就越大。按照“无穷大数算术”的奠基者康托尔的意见,无穷大数是用希伯来字母ℵ(读作阿莱夫)表示的,在字母的右下角,再用一个小号数字表示这个无穷大数的级别。这样一来,数目字(包括无穷大数)的数列就成为无穷大的头三级分别为“所有整数和分数的数目”(ℵ1),“线、面、体上所有几何点的数目”(ℵ2)和“所有几何曲线的数目”(ℵ3)。

这样我们就可以说“一条直线上有ℵ2个点”、“所有曲线的样式有ℵ3种”,这就像我们说“人一天要吃3顿饭”、“地球有1个卫星”一样简单了。

无穷大的这三级已经足够表示目前我们能想到的所有无穷大了,所以不要再头大地给一个数无限地加1了,因为这仅仅是第一级无穷大,你连这一级都数不完。

无穷大的秘密不止这些,科学需要我们不停地去探索,去发现,就像牛顿发现万有引力时那样,对于人们司空见惯的事物依然抱有好奇心,并且对这些事物抱有极大地探索欲,才有希望发现其中隐藏的科学道理,这就是科学对我们的要求。只有孜孜不倦地进行探索,才能推进科学的发展,才能对人类的进步有所贡献。就像无穷大一样,当你觉得已经知道的够多时,科学都会提醒你,你还能再进一步,这也许就是无穷大的魅力,也是科学的魅力,因为你根本不知道下一步你会发现什么。所以,去探索未知吧。

内容资源由项目单位提供